Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
2.
Elife ; 122024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662411

RESUMO

Declines in biodiversity generated by anthropogenic stressors at both species and population levels can alter emergent processes instrumental to ecosystem function and resilience. As such, understanding the role of biodiversity in ecosystem function and its response to climate perturbation is increasingly important, especially in tropical systems where responses to changes in biodiversity are less predictable and more challenging to assess experimentally. Using large-scale transplant experiments conducted at five neotropical sites, we documented the impacts of changes in intraspecific and interspecific plant richness in the genus Piper on insect herbivory, insect richness, and ecosystem resilience to perturbations in water availability. We found that reductions of both intraspecific and interspecific Piper diversity had measurable and site-specific effects on herbivory, herbivorous insect richness, and plant mortality. The responses of these ecosystem-relevant processes to reduced intraspecific Piper richness were often similar in magnitude to the effects of reduced interspecific richness. Increased water availability reduced herbivory by 4.2% overall, and the response of herbivorous insect richness and herbivory to water availability were altered by both intra- and interspecific richness in a site-dependent manner. Our results underscore the role of intraspecific and interspecific richness as foundations of ecosystem function and the importance of community and location-specific contingencies in controlling function in complex tropical systems.


Assuntos
Biodiversidade , Ecossistema , Herbivoria , Insetos , Clima Tropical , Animais , Insetos/fisiologia , Piper/fisiologia
3.
Sci Rep ; 14(1): 9337, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653762

RESUMO

Soil water-holding capacity decreases due to long-term mineral fertilizer application. The objective of this study was to determine how replacing mineral fertilizer with maize straw affected the soil water retention curve, soil water content, soil water availability, and soil equivalent pore size. Replacement treatments in which 25% (S25), 50% (S50), 75% (S75), and 100% (S100) of 225 kg ha-1 nitrogen from mineral fertilizer (CK) was replaced with equivalent nitrogen from maize straw were conducted for five years in the Loess Plateau of China. The Gardner model was used to fit the soil water retention curve and calculate the soil water constant and equivalent pore size distribution. The results indicated that the Gardner model fitted well. Replacing nitrogen from mineral fertilizer with nitrogen from straw increased soil specific water capacity, soil readily available water, soil delayed available water, soil available water, soil capillary porosity, and soil available water porosity over time. S25 increased field capacity and wilting point from the fourth fertilization year. S50 enhanced soil readily available water, soil delayed available water, soil available water, and soil available water porosity from the fifth fertilization year, whereas S25 and S75 increased these from the third fertilization year or earlier. Soil specific water capacity, soil readily available water, soil delayed available water, soil available water, soil capillary porosity, and soil available water porosity could better reflect soil water-holding capacity and soil water supply capacity compared with field capacity and wilting point.

4.
Glob Chang Biol ; 30(3): e17231, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38481067

RESUMO

Leaf coloring and fall mark the end of the growing season (EOS), playing essential roles in nutrient cycling, resource allocation, ecological interactions, and as climate change indicators. However, understanding future changes in autumn phenology is challenging due to the multitude of likely environmental cues and substantial variations in timing caused by different derivation methods. Yet, it remains unclear whether these two factors are independent or if methodological uncertainties influence the environmental cues determined. We derived start of growing season (SOS) and EOS at a mixed beech forest in Central Germany for the period 2000-2020 based on four different derivation methods using a unique long-term data set of in-situ data, canopy imagery, eddy covariance measurements, and satellite remote sensing data and determined their influence on a predictor analysis of leaf senescence. Both SOS and EOS exhibited substantial ranges in mean onset dates (39.5 and 28.6 days, respectively) across the different methods, although inter-annual variations and advancing SOS trends were similar across methods. Depending on the data, EOS trends were advanced or delayed, but inter-annual patterns correlated well (mean r = .46). Overall, warm, dry, and less photosynthetically productive growing seasons were more likely to be associated with a delayed EOS, while colder, wetter, and more photosynthetically productive vegetation periods resulted in an earlier EOS. In addition, contrary to recent results, no clear influence of pre-solstice vegetation activity on the timing of senescence was detected. However, most notable were the large differences in sign and strength of potential drivers both in the univariate and multivariate analyses when comparing derivation methodologies. The results suggest that an ensemble analysis of all available phenological data sources and derivation methods is needed for general statements on autumn phenology and its influencing variables and correct implementation of the senescence process in ecosystem models.


Assuntos
Sinais (Psicologia) , Ecossistema , Estações do Ano , Temperatura , Florestas , Mudança Climática
5.
Plants (Basel) ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38498433

RESUMO

Significant research has been conducted on the effects of fertilizers or agents on the sustainable development of agriculture in salinization areas. By contrast, limited consideration has been given to the interactive effects of microbial fertilizer (MF) and salinity on hydraulic properties in secondary salinization soil (SS) and coastal saline soil (CS). An incubation experiment was conducted to investigate the effects of saline soil types, salinity levels (non-saline, low-salinity, and high-salinity soils), and MF amounts (32.89 g kg-1 and 0 g kg-1) on soil hydraulic properties. Applied MF improved soil water holding capacity in each saline soil compared with that in CK, and SS was higher than CS. Applied MF increased saturated moisture, field capacity, capillary fracture moisture, the wilting coefficient, and the hygroscopic coefficient by 0.02-18.91% in SS, while it was increased by 11.62-181.88% in CS. It increased soil water supply capacity in SS (except for high-salinity soil) and CS by 0.02-14.53% and 0.04-2.34%, respectively, compared with that in CK. Soil available, readily available, and unavailable water were positively correlated with MF, while soil gravity and readily available and unavailable water were positively correlated with salinity in SS. Therefore, a potential fertilization program with MF should be developed to increase hydraulic properties or mitigate the adverse effects of salinity on plants in similar SS or CS areas.

6.
Sci Total Environ ; 925: 171520, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460697

RESUMO

The water sector is facing unprecedented pressures as increased environmental and anthropogenic challenges, such as climate change and rapid urbanization, impact the availability and predictability of safe drinking water. There is a need for practitioners and policymakers to integrate water security and resilience (WS&R) factors into programming to sustain investments in drinking water systems to support associated economic, security, and public health benefits. In response to intensifying impacts from WS&R risks, communities around the world are developing adaptive strategies, and a critical review of these strategies may provide lessons that can be implemented at scale. In this critical review, we systematically screened over 9000 peer-reviewed and grey literature articles and extracted data from relevant studies that propose, pilot, and/or evaluate adaptations in low- and middle-income countries (LMICs) and evaluated the suitability of each adaptation for different contexts. We created a portfolio of adaptive strategies from over 75 LMICs to inform practitioners and policymakers in enhancing the resilience of drinking water systems. Over 20 adaptations were identified, including strategies such as stormwater management, wastewater reuse, non-revenue water reductions, water pricing, and public awareness campaigns. We categorized adaptations by function (improving water management, augmenting existing supplies, reducing water demand) and scale (household, municipal, regional) to provide recommendations tailored to local needs. For each adaptation, we highlighted associated strengths, weaknesses, barriers to adoption, and enabling environments for successful implementation. We propose a novel decision-support tool, called STEP WS&R, that provides a consistent and replicable process for informing high-level investment and policy choices around WS&R. This critical review presents recommendations for practitioners and policymakers to invest in WS&R adaptations, catered to shared risks and contexts.

7.
Sci Total Environ ; 921: 171170, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38402979

RESUMO

Concurrent changing precipitation regimes and atmospheric nitrogen (N) deposition can have profound influences on soil carbon (C) cycling. However, how N enrichment regulates the responses of soil C fluxes to increasing variability of precipitation remains elusive. As part of a field precipitation gradient experiment with nine levels of precipitation amounts (-60 %, -45 %, -30 %, -15 %, ambient precipitation, +15 %, +30 %, +45 %, and +60 %) and two levels of N addition (0 and 10 g N m-2 yr-1) in a semi-arid temperate steppe on the Mongolian Plateau, this work was conducted to investigate the responses of soil respiration to decreased and increased precipitation (DP and IP), N addition, and their possible interactions. Averaged over the three years from 2019 to 2021, DP suppressed soil respiration by 16.1 %, whereas IP stimulated it by 27.4 %. Nitrogen addition decreased soil respiration by 7.1 % primarily via reducing microbial biomass C. Soil respiration showed symmetric responses to DP and IP within all the four precipitation variabilities (i.e., 15 %, 30 %, 45 %, and 60 %) under ambient N. Nevertheless, N addition did not alter the symmetric responses of soil respiration to changing precipitation due to the comparable sensitivities of microbial biomass and root growth to DP and IP under the N addition treatment. These findings indicate that intensified precipitation variability does not change but N addition could alleviate soil C releases. The unchanged symmetric responses of soil respiration to precipitation variability under N addition imply that N deposition may not change the response pattern of soil C releases to predicted increases in precipitation variability in grasslands, facilitating the robust projections of ecosystem C cycling under future global change scenarios.


Assuntos
Ecossistema , Pradaria , Nitrogênio/análise , Solo , Microbiologia do Solo , Carbono
8.
Sci Total Environ ; 917: 170491, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301786

RESUMO

Climate change and anthropogenic activity pose severe threats to water availability in drylands. A better understanding of water availability response to these threats could improve our ability to adapt and mitigate climate and anthropogenic effects. Here, we present a Mesic Vegetation Persistence (MVP) workflow that takes every usable image in the Sentinel (10-m) and Landsat (30-m) archives to generate a dense time-series of water availability that is continuously updated as new images become available in Google Earth Engine. MVP takes advantage of the fact that mesic vegetation can be used as a proxy of available water in drylands. Our MVP workflow combines a novel moisture-based index (moisture change index - MCI) with a vegetation index (Modified Chlorophyll Absorption Ratio Vegetation Index (MCARI2)). MCI is the difference in soil moisture condition between an individual pixel's state and the dry and wet reference reflectance in the image, derived using 5th and 95th percentiles of the visible and shortwave infra-red drought index (VSDI). We produced and validated our MVP products across drylands of the western U.S., covering a broad range of elevation, land use, and ecoregions. MVP outperforms NDVI, a commonly-employed index for mesic ecosystem health, in both rangeland and forested ecosystems, and in mesic habitats with particularly high and low vegetation cover. We applied our MVP product at case study sites and found that MVP more accurately characterizes differences in mesic persistence, late-season water availability, and restoration success compared to NDVI. MVP could be applied as an indicator of change in a variety of contexts to provide a greater understanding of how water availability changes as a result of climate and management. Our MVP product for the western U.S. is freely available within a Google Earth Engine Web App, and the MVP workflow is replicable for other dryland regions.

9.
Environ Monit Assess ; 196(2): 152, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38225435

RESUMO

Preserving lacustrine ecosystems is vital for sustainable watershed development, and forecasting the environmental water availability of lakes would support policymakers in developing sound management strategies. This study proposed a methodology that merges the lake water level prediction and environmental water availability evaluation. The temporal fusion transformer (TFT) model forecasted the lake water levels for the next 7 days by inputting the streamflow and lake water level data for the past 30 days. The environmental water availability was assessed by comparing the forecasted lake water levels with the environmental water requirements, resulting in adequate, regular, scarce, and severely scarce environmental water availability. The methodology was tested in two case studies: Poyang Lake and Dongting Lake, the two largest freshwater lakes in the Yangtze River Basin, China. The TFT model performed well in forecasting the lake water levels, as shown by the high coefficient of determination and finite root mean square error. The coefficients of determination exceeded 0.98 during the model training, validation, and test for both Poyang Lake and Dongting Lake, and the root mean square errors ranged from 0.06 to 0.46 m. The accurate prediction of lake water level promoted the precise forecasting of the environmental water availability with the high Kappa coefficient exceeding 0.90. Results indicated the rationality and effectiveness of integrating the lake water level prediction and environmental water availability evaluation. Future research includes the applicability of the TFT model to other lakes worldwide to test the proposed approach and investigate strategies to cope with environmental water scarcity.


Assuntos
Ecossistema , Lagos , Água , Monitoramento Ambiental/métodos , China
10.
J Environ Manage ; 352: 120097, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38237338

RESUMO

One third of the world's largest cities are located in drylands, where much of future urbanization is projected to occur. This is paradoxical and unsustainable considering water scarcity in drylands, which is exacerbated by climate change. Thus, it is critical to better understand why and how dryland urbanization and water scarcity are decoupled so that sustainable measures can be designed. Focusing on the Phoenix Metropolitan Area (PMA) of the United States, we addressed the following questions: 1) What are the relative influences of water and economic factors on urbanization in recent decades? 2) Which linkages connecting water storage to urban development have been decoupled? and 3) How can water availability and development be better coupled to improve regional sustainability? We tested the relationships between economic factors, water availability, and urbanization, with Pearson Correlation Analysis and Structural Equation Modeling. We found that, from 1986 to 2019, urban population growth and urban land expansion in the PMA were driven by economic factors, and not influenced by fluctuations in water supply. We identified specific broken linkages among water storage, water deliveries, municipal water supply, and urbanization, which must be coupled to enforce water availability constraints on urban expansion in the context of climate change. Our study has important implications for dryland urban sustainability as urbanization on borrowed water is, by definition, unsustainable.


Assuntos
Urbanização , Água , Humanos , Cidades , Crescimento Sustentável , População Urbana
11.
Data Brief ; 52: 109991, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38235174

RESUMO

This dataset [1] quantifies the extent and rate of annual change in surface water area (SWA) across India's rivers and basins over a period of 30 years spanning 1991 to 2020. This data has been derived from the Global Surface Water Explorer, which maps historical terrestrial surface water occurrence globally using the Landsat satellite image archive since 1984, at a spatial resolution of 30 m/pixel and a temporal resolution of once a month. This monthly time-series was used to create annual composites of wet-season (October, November, December), dry-season (February, March, April), and permanent (October, November, December, February, March, April) surface water extent, which were then used to estimate annual rates of change. To estimate SWA trends for both river networks and their basins, we conducted our analysis at two spatial scales - (1) cross-sectional reaches (transects) across river networks, and (2) sub-basins within river catchments. For each reach and sub-basin (henceforth basin), temporal trends in wet-season, dry-season, and permanent SWA were estimated using the non-parametric Sen's slope estimator. For every valid reach and basin, the temporal timeseries of invalid or missing data was also computed as a fractional area to inform the level of certainty associated with reported SWA trends estimates. In addition to a Zenodo data repository, this data [1] is presented as an interactive web application (https://sites.google.com/view/surface-water-trends-india/; henceforth Website) to allow users to visualize the trends of permanent, wet-season, and dry-season water along with the extent of missing data for individual transects or basins across India. The Website provides a simple user interface to enable users to download seasonal time-series of SWA for any region of interest at the scale of the river network or basin. The Website also provides details about accessing the annual permanent, dry and wet season composites, which are stored as publicly accessible cloud assets on the Google Earth Engine platform. The spatial (basin and reach) and temporal (wet season, dry season, and permanent water scenarios) scales of information provided in this dataset yield a granular understanding of water systems in India. We envision this dataset to serve as a baseline information layer that can be used in combination with other data sources to support regional analysis of hydrologic trends, watershed-based analysis, and conservation planning. Specific applications include, but are not limited to, monitoring and identifying at-risk wetlands, visualizing and measuring changes to surface water extent before and after water infrastructure projects (such as dams and water abstraction projects), mapping drought prone regions, and mapping natural and anthropogenic changes to SWA along river networks. Intended users include, but are not limited to, students, academics, decision-makers, planners, policymakers, activists, and others interested in water-related issues.

12.
Plants (Basel) ; 13(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256735

RESUMO

The carbon (C) fixed by crops, which is exported with harvest and retained as postharvest residues in a field, is important for calculating the C balance. The aim of this study was to determine the effect of water availability on the C content in whole wheat plants. In a three-year field trial, the weights of grain, straw, chaff, stubble, and roots of two cultivars of winter wheat (Triticum aestivum L.) and one cultivar of einkorn wheat (Triticum monococcum L.) and their carbon contents were determined in water stress, irrigation, and rain-fed control treatments. The water availability, year, and cultivar had a significant influence on the C content in aboveground plant parts, but the effect of water on grain C was weak. The C content decreased with irrigation and increased with drought, but the differences were small (at most, 3.39% in chaff). On average, the C contents of grain, straw, chaff, and roots reached 45.0, 45.7, 42.6, and 34.9%, respectively. The amount of C exported with grain and left on the field in the form of postharvest residues depended on the weight of the total biomass and the ratio of grain to straw and residue. Whole plant C yield reached 8.99, 7.46, and 9.65 t ha-1 in rain-fed control, stressed, and irrigated treatments, respectively, and 8.91, 9.45, and 7.47 t ha-1 in Artix, Butterfly, and Rumona, respectively. Irrigation significantly increased the C content in grain and straw (but not in chaff, stubble, and roots) in comparison with water shortage conditions. On average, a grain yield of 1 t ha-1 corresponded to an average export of 0.447-0.454 t C ha-1 in the grain of all cultivars and inputs of 0.721, 0.832, and 2.207 t C ha-1 of residue to the soil in the form of straw and postharvest residue in the two cultivars of common wheat and one of einkorn. The results of the study provided reliable data for the calculation of the C balance of wheat under conditions of different water availability.

13.
Glob Chang Biol ; 30(1): e17138, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273499

RESUMO

Water availability (WA) is a key factor influencing the carbon cycle of terrestrial ecosystems under climate warming, but its effects on gross primary production (EWA-GPP ) at multiple time scales are poorly understood. We used ensemble empirical mode decomposition (EEMD) and partial correlation analysis to assess the WA-GPP relationship (RWA-GPP ) at different time scales, and geographically weighted regression (GWR) to analyze their temporal dynamics from 1982 to 2018 with multiple GPP datasets, including near-infrared radiance of vegetation GPP, FLUXCOM GPP, and eddy covariance-light-use efficiency GPP. We found that the 3- and 7-year time scales dominated global WA variability (61.18% and 11.95%), followed by the 17- and 40-year time scales (7.28% and 8.23%). The long-term trend also influenced 10.83% of the regions, mainly in humid areas. We found consistent spatiotemporal patterns of the EWA-GPP and RWA-GPP with different source products: In high-latitude regions, RWA-GPP changed from negative to positive as the time scale increased, while the opposite occurred in mid-low latitudes. Forests had weak RWA-GPP at all time scales, shrublands showed negative RWA-GPP at long time scales, and grassland (GL) showed a positive RWA-GPP at short time scales. Globally, the EWA-GPP , whether positive or negative, enhanced significantly at 3-, 7-, and 17-year time scales. For arid and humid zones, the semi-arid and sub-humid zones experienced a faster increase in the positive EWA-GPP , whereas the humid zones experienced a faster increase in the negative EWA-GPP . At the ecosystem types, the positive EWA-GPP at a 3-year time scale increased faster in GL, deciduous broadleaf forest, and savanna (SA), whereas the negative EWA-GPP at other time scales increased faster in evergreen needleleaf forest, woody savannas, and SA. Our study reveals the complex and dynamic EWA-GPP at multiple time scales, which provides a new perspective for understanding the responses of terrestrial ecosystems to climate change.


Assuntos
Ecossistema , Água , Florestas , Ciclo do Carbono , Mudança Climática
14.
Front Public Health ; 11: 1287678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106890

RESUMO

Introduction: Given the rapid geographic spread of dengue and the growing frequency and intensity of heavy rainfall events, it is imperative to understand the relationship between these phenomena in order to propose effective interventions. However, studies exploring the association between heavy rainfall and dengue infection risk have reached conflicting conclusions, potentially due to the neglect of prior water availability in mosquito breeding sites as an effect modifier. Methods: In this study, we addressed this research gap by considering the impact of prior water availability for the first time. We measured prior water availability as the cumulative precipitation over the preceding 8 weeks and utilized a distributed lag non-linear model stratified by the level of prior water availability to examine the association between dengue infection risk and heavy rainfall in Guangzhou, a dengue transmission hotspot in southern China. Results: Our findings suggest that the effects of heavy rainfall are likely to be modified by prior water availability. A 24-55 day lagged impact of heavy rainfall was associated with an increase in dengue risk when prior water availability was low, with the greatest incidence rate ratio (IRR) of 1.37 [95% credible interval (CI): 1.02-1.83] occurring at a lag of 27 days. In contrast, a heavy rainfall lag of 7-121 days decreased dengue risk when prior water availability was high, with the lowest IRR of 0.59 (95% CI: 0.43-0.79), occurring at a lag of 45 days. Discussion: These findings may help to reconcile the inconsistent conclusions reached by previous studies and improve our understanding of the complex relationship between heavy rainfall and dengue infection risk.


Assuntos
Dengue , Animais , Dengue/epidemiologia , Água , Fatores de Tempo , Incidência , China/epidemiologia
15.
Sci Total Environ ; 904: 166631, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659564

RESUMO

Access to water, sanitation, and hygiene (WaSH) is crucial for national development, as it improves human health and fulfills a fundamental need. This study examines the impact of a large-scale groundwater (GW) recharge scheme using secondary treated wastewater (STW) on WaSH characteristics and identifies the major determinants of improved WaSH charecteristics in drought-hit regions of Kolar district, southern India. The study quantifies improved WaSH practices by comparing WaSH characteristics between impacted areas (influenced by STW) and non-impacted areas (not influenced by STW) of Kolar, using household survey data. Pearson's chi-square and student's t-test are used to verify differences between WaSH characteristics. Furthermore, a composite WaSH score is formulated, and a hierarchical stepwise multiple linear regression model is constructed to identify major determinants of improved WaSH scores. The results show that impacted areas have better WaSH characteristics, including daily water supply by gram panchayat, enhanced toilet uses among all family members, bathing patterns, cloth washing practices, toilet cleaning patterns, and water consumption per capita per day. The maximum and minimum WaSH scores of impacted areas were 17.50 and 6.50, respectively, while those of non-impacted areas were 14 and 4.5. This study finds that improved water availability, quality, and security due to daily water supply at the household level are the major determinants of improved WaSH practices. These results can inform policymakers in designing sanitation and hygiene improvement policies that integrate water recycling projects in drought-hit areas.


Assuntos
Águas Residuárias , Água , Humanos , Saneamento , Abastecimento de Água , Higiene
16.
Front Plant Sci ; 14: 1211182, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711301

RESUMO

Background: Changes in rainfall induced by climate change will likely influence the utilization of water resources and affect the nutrient cycle in plants in the water-limited desert steppe. In order to understand the response of nitrogen and phosphorus resorption characteristics of plant leaves to precipitation changes, this study compared the nitrogen (N) resorption efficiency, phosphorus (P) resorption efficiency and influencing factors of plants in a desert steppe through water treatment experiments. Methods: A 4-year field experiment was performed to examine the response and influencing factors of nitrogen (N) and phosphorus resorption efficiency of five dominant plants in Stipa breviflora desert steppe to simulated precipitation change in Inner Mongolia, with four simulated precipitation gradients including reducing water by 50%, natural precipitation, increasing water by 50%, increasing water by 100%. Results: Compared with natural precipitation, increasing water by 100% significantly increased soil moisture, and significantly increased the aboveground biomass of S. breviflora, C. songorica, A. frigida, decreased the N concentrations in green leaves of S. breviflora, Cleistogenes songorica, Artemisia frigida, Kochia prostrata, decreased the N concentrations in senesced leaves of C. songorica, decreased the P concentrations in green leaves of K. prostrata and Convolvulus ammannii, decreased the NRE of S. breviflora. NRE was significantly negatively correlated with N concentration in senesced leaves, and PRE was significantly negatively correlated with P concentration in senesced leaves. Conclusions: Increasing water indirectly reduces NRE by reducing plant leaf green leaves nitrogen concentration, and decreasing water indirectly reduces PRE by reducing soil moisture.

18.
Res Sq ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693392

RESUMO

Background: Given the rapid geographic spread of dengue and the growing frequency and intensity of heavy rainfall events, it is imperative to understand the relationship between these phenomena in order to propose effective interventions. However, studies exploring the association between heavy rainfall and dengue infection risk have reached conflicting conclusions. Methods: In this study, we use a distributed lag non-linear model to examine the association between dengue infection risk and heavy rainfall in Guangzhou, a dengue transmission hotspot in southern China, stratified by prior water availability. Results: Our findings suggest that the effects of heavy rainfall are likely to be modified by prior water availability. A 24-55 day lagged impact of heavy rainfall was associated with an increase in dengue risk when prior water availability was low, with the greatest incidence rate ratio (IRR) of 1.37 (95% credible interval (CI): 1.02-1.83) occurring at a lag of 27 days. In contrast, a heavy rainfall lag of 7-121 days decreased dengue risk when prior water availability was high, with the lowest IRR of 0.59 (95% CI: 0.43-0.79), occurring at a lag of 45 days. Conclusions: These findings may help to reconcile the inconsistent conclusions reached by previous studies and improve our understanding of the complex relationship between heavy rainfall and dengue infection risk.

19.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743552

RESUMO

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Assuntos
Embolia , Água Subterrânea , Água/fisiologia , Madeira/fisiologia , Xilema/fisiologia , Plantas , Folhas de Planta/fisiologia , Secas
20.
Ann Bot ; 132(3): 429-442, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37632795

RESUMO

BACKGROUND AND AIMS: Understanding patterns and mechanisms of nurse plant facilitation is important to predict the resilience of arid/semi-arid ecosystems to climate change. We investigate whether water availability and nurse species turnover interact to shape the facilitation pattern of widespread legume shrubs along a large elevation gradient. We also investigate whether leaf δ13C of nurse plants can track the facilitation pattern. METHODS: We measured the relative interaction index (RII) of the number of species within and outside the canopy of two widespread legume shrub species (Caragana gerardiana and Caragana versicolor) alternatively distributed along a large elevation gradient in the Trans-Himalayas. We also assessed the proportional increase of species richness (ISR) at the community level using the paired plot data. To determine site-specific water availability, we measured the leaf δ13C of nurse shrubs and calculated the Thornthwaite moisture index (MI) for each elevation site. KEY RESULTS: Elevational variations in RII, ISR and δ13C were mainly explained by the MI when the effects of soil nitrogen and plant traits (leaf nitrogen and shrub size) were controlled. Variations in RII and ISR across the two nurse species were explained better by δ13C than by smoothly changing climatic factors along elevation. At the transition zone between the upper limit of C. gerardiana (4100 m) and the lower limit of C. versicolor (4200 m), RII and ISR were much higher in C. versicolor than in C. gerardiana under a similar MI. Such an abrupt increase in facilitation induced by nurse species replacement was well tracked by the variation of δ13C. CONCLUSIONS: Water availability and nurse species replacement are crucial to shaping facilitation patterns by legume shrubs along a large elevation gradient in dry mountainous regions, such as the Trans-Himalayas. Turnover in nurse species under global change might significantly alter the pattern of nurse plant facilitation associated with water availability, which can be well tracked by leaf δ13C.


Assuntos
Ecossistema , Fabaceae , Isótopos de Carbono , Água , Plantas , Verduras , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...